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1. Introduction 

The traditional asymptotic homogenization method has found wide acceptance in the composites 
modeling community (Bendsoe and Kikuchi, 1988; Fish et al., 1999; Francfort and Murat, 1986; 
Ghosh et al., 1996; Hollister et al., 1994; Lene, 1986; Moulinec and Suquet, 1998; Sanchez-
Palencia, 1980; Shkoller and Hegemier, 1995), for its ability to incorporate and estimate 
effective material properties from a subscale representative unit cell (Babuska, 1976).  Central to 
the method is the principal of convergence, which has been studied in the mathematical literature 
for H-, G-, Γ-, and two-scale convergence.  In simple terms, H-convergence, for example, states 
that over an open bounded domain Ω in RN, a sequence of bounded and finite matrices εA  is said 
to H-converge to a sequence of bounded and finite matrices A if, for all ( )Ω∈ −1Hf , the 
solution εu  of ( ) ( )Ω  , 1

0HufuAdiv ∈=∇− εεε  converges, as the scaling parameter ε goes to zero, 
in weak- ( )Ω1

0H  to the solution u of ( ) ( )Ω  , 1
0HufuAdiv ∈=∇−  and if the sequence εε uA ∇  

converges in weak- ( )NL Ω2 to uA∇ .  In general, the H-limit of εA , which is A, is not explicit 
except under certain assumptions.  The works of Bensoussan et al. (1978) and Sanchez-Palencia 
(1980) are commonly cited to show that the explicit H-limit is known for periodic systems.  
Loosely speaking, for the convergence of εA  in the appropriate space of linear operators, or the 
convergence of the Green’s operator, the literature refers to G-convergence (Spagnolo, 1976).  
The convergence of ( )εεεε u  ,u ,uA ∇∇  is referred to as Γ-convergence (Tartar, 1978), and a more 
specific case of H-convergence, which takes into account the periodicity of the solution, is 
referred to as two-scale convergence (Allaire, 1992). 

The engineering and computational mechanics literature have made such extensive use of these 
fundamental mathematical developments that it is difficult to provide a truly exhaustive 
bibliography.  We note among many, however, the work on structural optimization (Bendsoe and 
Kikuchi, 1988), biomechanics (Hollister et al., 1994), and multiphysics solid mechanics (Fish et 
al., 1999; Fish and Yu, 2001; Ghosh et al., 1996, 2001; Lene, 1986; Moulinec and Suquet, 1998; 
Shkoller and Hegemier, 1995; Terada et al., 2000; Terada and Kikuchi, 2001).  Until now, 
however, the engineering developments in homogenization have mainly considered specialized 
cases of two-scale convergence where the periodicity is built into the computational procedure.  
The application of the so-called y-periodicity generally precludes the ability to consider 
nonperiodic systems.  In this regard, developments in the engineering and mathematical literature 
have been on divergent paths. 

We have found that nonperiodicity can occur under two scenarios.  The first is when the finite 
boundary has a direct influence on the solution, or the reduction-of-dimension situation, which 
can occur typically in laminated plates or stratified rods.  The second is when the material 
exhibits finite microstructure but in a nonperiodic sense.  This can commonly be encountered in 
the form of localized behavior, such as that found in damage mechanics or fracture, or in 
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smoothly varying microscopic material dependence on macroscopic coordinates, such as that 
found in functionally graded composites.  

Limited works by the engineering community have attempted to modify the homogenization 
method for systems involving finitely thick plates (Rostam-Abadi et al., 2000).  Still others have 
considered the presence of strong anharmonic local fields that disrupt the periodicity and require 
increased resolution solutions (Oden and Vemaganti, 1999; Ghosh et al., 2001; Oden et al., 
2001).  In these works, the traditional periodic homogenization method has been modified at a 
schematic level using the laminated plate theory (Rostam-Abadi et al., 2000) or h and p finite 
element adaptivity techniques (Ghosh et al., 2001; Oden et al., 2001) so that directions in 
Cartesian space or regions within a nonperiodically deforming body are specifically accounted 
for by small changes in the periodic homogenization procedure.  On the other hand, 
developments in the mathematical literature have been tied to special cases where material 
dependence on spatial coordinates is strictly demonstrable (Briane, 1994; Shkoller, 1997; Fabre 
and Mossino, 1998).  Namely, they consider material types where key heterogeneous features are 
within a diffeomorphic mapping and linear mapping away from a periodic arrangement.     

Briane (1994) developed a nonperiodic homogenization method in which a highly oscillatory but 
nonperiodic matrix εA  is compared to a periodic matrix εB  as the microscale feature size goes 
(slower) to zero as ε goes to zero.  The limit of εB  is a function of every point in the material.  
Recognizing the computationally infeasible nature of this approach, Shkoller (1997) showed that 
the problem could be simplified to a unit cell approach, where the microscale feature size is kept 
finite and the error in the approximation is of the order of the unit cell size.  In this sense, the 
asymptotic nature of homogenization is not being fully assumed.  Fabre and Mossino (1998) 
completed a similar study, looking at H-convergent multiplicable matrices that may be used to 
perform a linear mapping that takes a periodic material into a nonperiodic one thereby allowing 
periodic homogenization of a mapped nonperiodic material.  Gustafsson and Mossino (2003) 
developed a nonperiodic homogenization method for diffusion equations based on the H-
convergent multiplicable matrices of Fabre and Mossino (1998) to write explicit expressions of 
homogenization for a plate and less explicit expressions for a thin cylinder. 

Developments in nonperiodic homogenization stem from the general H-convergence properties 
of the homogenization theory combined with mapping principles and dimension reduction.  In its 
most general and primitive form, homogenization makes no presumption of periodicity, which 
indicates that its application to nonperiodic systems can be made forthwith.  Bensoussan et al. 
(1978) have shown a one-dimensional result for homogenization that is implicit in its absence of 
periodicity constraints on the microstructure. 

In this report, we develop a one-dimensional nonperiodic computational homogenization method 
with explicit equations and show that it recovers the periodic case.  This is done by relaxing the 
periodicity assumption of the microscale displacement field, integrating analytically, and 
applying a boundedness argument to the result.  The procedure is entirely different from that of 
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Bensoussan et al. (1978) yet is shown to yield the same result.  This enables the development of 
the new computational homogenization procedure for the one-dimensional continua (i.e., for the 
elastic rod).  Generalization to the three-dimensional continua is expected to follow in a later 
paper.  When compared to the engineering literature, the procedure described differs in two 
ways:  (1) the approximation space is introduced early in the procedure, and (2) no periodicity 
condition is imposed on the microscale displacement field.  This second difference is expected to 
make the new procedure relevant to a wider class of problems than the preceding 
homogenization procedures.  Using the example of an end-displaced rod with linearly varying 
axial rigidity EA, a comparison is made between the displacement field predicted by the new 
homogenization procedure and the displacement field of the exact solution.  A second example 
of a rod with periodically varying axial rigidity is used to discuss the appropriateness of the 
microscale periodicity condition imposed by preceding homogenization procedures.  

2. On a New Homogenization Procedure 

2.1 Formulation 

Consider a straight rod characterized by an axial rigidity EA, whose deformation is described by 
a displacement field )( εε xu  governed by the equilibrium equation 

 f
x
uEA

x
−=








∂
∂

∂
∂

ε

ε

ε , (1) 

where for the simplicity of discussion, the external forcing  f  will be considered to be absent.  
Consider further the rod to be fixed rigidly at its initiating end with a prescribed displacement at 
its terminating end: 

 ,0)0( ==εε xu  (2) 

and 

 lulxu == )( εε . (3) 

This choice of end conditions is motivated by an eventual finite element implementation of the 
described procedure, in which the end conditions take the form of equations 2 and 3, and a rigid 
body translation.  The axial rigidity EA of the described rod is considered to be nonuniform.  It 
can be decomposed into a constant macroscale axial rigidity and a nonconstant microscale axial 
rigidity 

 )(10 yEAEAEA += , (4) 
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where dependence on the macroscale implies εxx =  dependence and dependence on the 
microscale implies εεxy  =  dependence, ε being a small parameter.  The equilibrium equation 
can be updated to reflect dependence on the two scales by using the derivative expression 

 
yxx ∂
∂

+
∂
∂

=
∂
∂

εε

1 . (5) 

As in previous homogenization procedures, the displacement field is expanded using ε:  

 ++= ),(),()( 10 yxuyxuxu εεε , (6)  

where ),(0 yxu  and ),(1 yxu  denote macro- and microscale displacement fields, respectively.  
Interchangeably, ),(0 yxu  will be termed the O(ε0) displacement, where O( ) denotes the order 
operator, and ),(1 yxu  will be termed the O(ε1) displacement.  Introducing equations 5 and 6 into 
equation 1 while neglecting quantities of O(ε2) in equation 6, followed by a separation of orders 
of ε, yields the following governing equations: 

for ε–2, 

 0
0

=







∂
∂

∂
∂

y
uEA

y
; (7) 

for ε–1, 

 02 2

120210

=
∂
∂

+
∂∂

∂
+








∂
∂

+
∂
∂

∂
∂

y
uEA

yx
uEA

y
u

x
u

y
EA ; (8) 

for ε0, 

 02
12

2

021

=
∂∂

∂
+

∂
∂

+
∂
∂

∂
∂

yx
uEA

x
uEA

x
u

y
EA ; (9) 

and for ε1, 

 02

12

=
∂
∂

x
uEA . (10) 

Without loss of generality, the boundary inhomogeneity lu  is not expanded and the boundary 
conditions can be restated as 

 ,0)0,0(0 =u  (11) 

 0001 =),(u , (12) 

 ,),( 00
lullu =ε  (13) 

and 
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 0),(1 =εllu . (14) 

Integrating equation 7 twice with respect to y yields 

 )()()(),( 21
0 xCyxCyxu += α , (15)  

where ∫= dy
EA

y 1)(α .  Assuming )(1 xC  is not proportional to ε, so as to preserve the relative 

ordering of all terms in (equation 6) for all y, the presence of )(yα  in equation 15 results in 
),(0 yxu  being unbounded as ∞→y , or equivalently then, as 0→ε .  For example, retaining 

only the macroscale term in the axial rigidity for ease of explanation, at the terminal end 
)ly( εα =  evaluates to 0

1
EA

l
ε

, which is unbounded as 0→ε .  We require that the solution 

procedure be bounded, or appealing to a physical argument, be applicable to the case of a 
homogenous rod where ε is arbitrarily small, in which case, the need for a bounded ),(0 yxu  
requires that )(1 xC  be zero.  

To further facilitate a solution, an approximating space is introduced for )(2 xC .  Specifically, we 
search for an approximation to ),(0 yxu  such that )(2 xC )(1 xH∈  (i.e., the Sobolev space of 
degree 1) (Hughes, 1987).  For simplicity herein, a single element that spans the rod’s length l 
will be considered, but, more generally, the use of the 1H  Sobolev approximation space admits 
usage of multiple elements while insuring displacement continuity across the element 
boundaries.  In accordance with this discussion, a linear polynomial approximation for )(2 xC  is 
introduced: 

 ,)( 222 bxaxC +=  (16) 

where 2a  and 2b  are unknown constants.  Applying the boundary conditions (equations 11 and 
13) yields 

 x
l

uxuyxu l
0

00 )(),( == . (17)  

With the determination of the O(ε0) displacement completed, the analysis of the O(ε1) 
displacement follows.  Substituting equation 17 into equations 8, 9, and 10 yields 

 02

1210

=
∂
∂

+







∂
∂

+
∂
∂

y
uEA

y
u

l
u

y
EA l , (18)  

 02
121

=
∂∂

∂
+

∂
∂

∂
∂

yx
uEA

x
u

y
EA , (19)  

and 

 02

12

=
∂
∂

x
uEA . (20)  



 6

Equation 18 can be rewritten as 

 







∂
∂

−=







∂
∂

∂
∂ 0

1

lu
l

EA
yy

uEA
y

, (21)  

which can be integrated once and rearranged to yield 

 )(3
0

1

xCu
l

EA
y
uEA l =+
∂
∂ . (22) 

Note that equation 22 states that a function of x and y (say g(x,y) = 0
1

lu
l

EA
y
uEA +
∂
∂ ) is equal to a 

function of x only (say f(x) = )(3 xC ) for all x,y—this can imply that either g(x, y) is a function of 
x only or both g(x, y) and f(x) are constant.  The former does not lead to an immediate solution,* 
while the latter leads to the solution 

 )()(),(,)( 4
0

3
1

33 xCu
l
yyCyxuCxC l +−== α , (23)  

where 3C  is a pure constant to be determined by the boundary conditions.  The substitution of 
equation 23 into equation 19 and the enforcement of the resulting equation for all y determine 
that 44 )( CxC =  (i.e., that 4C  is also a pure constant to be determined by the boundary 
conditions).†  Note that the resulting solution for the microscale displacement 1u  is independent 
of x and satisfies equation 20 identically.  Following application of equations 12 and 14, the 
microscale displacement is given by 

 0
0

1 )(
)(

)( l
l u

l
yy

l
uyu −= α

εεα
. (24)  

Due to the presence of the multiplier ε in equation 6, )(1 yuε  is bounded for all y as 0→ε .  Note 
that the microscale displacement is not necessarily periodic in y even if the axial rigidity EA is.  
Traditional homogenization procedures summarily impose periodicity on the microscale 
displacement.  As a final note, for the case of a homogenous rod (i.e., 0)(1 =yEA ), equation 24 
evaluates to zero, the macroscale displacement is given by equation 17, and the exact solution is 
recovered.  

2.2 Extension of Procedure to Include Higher-Order Terms in )x(u εε  

The solutions presented in section 2.1 were found by truncating the asymptotic expansion 
(equation 6) up to O(ε3).  If instead truncation is not performed, a new term involving ),(2 yxu  

                                                 
*Simplification of the equations does not occur for this choice, but the possibility of a second solution arising from this choice 

may exist. 
†For the case of a nonzero external load f(x), 4C  is replaced by ( )

4C
yEA

dxxf
+

∂∂
∫ . 
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appears in equations 9 and 19.  Similarly, new terms involving ),(2 yxu  and ),(3 yxu  appear in 
equations 10 and 20.  Note that equation 10, and thus equation 20, were not used in developing 
the solution procedure but instead were checked for satisfaction.  In the solution presented for 
this section, attention is therefore focused only on solving the new equation 19, namely 

 02
2121

=







∂
∂

∂
∂

+
∂∂

∂
+

∂
∂

∂
∂

y
uEA

yyx
uEA

x
u

y
EA , (25)  

with the still valid equations 22 and 23.  In this manner, macro- and microscale displacements 
will again be developed without the need to first truncate the displacement asymptotic series 
given by equation 6.  

Substituting equation 23 into equation 25 and redistributing yields 

 

y
EA

y
uEA

y
C

∂
∂









∂
∂

∂
∂

−
=′

2

4 , (26)  

where a prime denotes differentiation with respect to x.  Note that equation 26 states that a function 
of x (say f(x) = 4C ′ ) is equal to a second function of both x and y (say g(x,y) = 

y
EA

y
uEA

y

2

∂
∂









∂
∂

∂
∂− ). 

As in the previous section, a solution in which both f(x) and g(x,y) are the same constant is sought.  
This leads to the expression 654 CxCC +=  and an updated expression for ),(1 yxu , 

 65
0

3
1 )(),( CxCu

l
yyCyxu l ++−= α , (27)  

with three undetermined true constants.  Application of the first boundary condition  
(equation 12) yields C6 = 0, while the second boundary condition (equation 13) yields 

 01
5

0
3 =+−






 lCulC lεε

α . (28)  

Separating equation 28 into O(ε–1) and O(ε0) terms yields two equations for the remaining 
constants: 

for ε–1, 

 01 0
3 =−








lulC
εε

α ; (29) 

and for ε0, 

 05 =lC , (30) 
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which, when satisfied again, yields equation 24. 

2.3 Application to an Example Rod—Linearly Varying Axial Rigidity EA 

The new homogenization procedure described in section 2.1 is applied to a rod of unit length 
with a linearly increasing axial rigidity given by 

 yEA 01.03+= , (31) 

and with an end displacement given by 1.00 =lu .  The microscale y is chosen to be one one-
hundredth of the macroscale x such that 010.=ε .  This information, evaluated with the 
definition of )( yα , the truncated expansion (equation 6), and the ordered displacements 
(equations 17 and 24), yields a predicted solution for the displacement field 

 )3ln(348.0382.0)( εεε xxu ++−= , (32) 

where all calculations have been carried out to three significant figures.  For comparison, an 
exact solution exists for the linearly varying rod.  Collecting the relevant information, the 
boundary value problem governing the rod’s exact displacement field is as follows: 

 0=







∂
∂

∂
∂

x
uEA

x
, yEA 01.03+= , 0)0( =u , 1.0)1( =u , (33) 

which has the solution 

 
)2ln(2)3ln(

)3ln(
10
1

)2ln(2)3ln(
)3ln(

10
1)(

−
+

−
−

=
xxu . (34) 

Evaluating equation 34 to three significant figures yields the exact displacement 

 )3ln(348.0382.0)( xxu ++−= , (35) 

which matches the perturbation solution (equation 32).  The same match occurs when the 
calculations are carried out to any number of significant figures, indicating that for the linearly 
varying rod, the newly described homogenization procedure recovers the exact solution. 

2.4 Application to an Example Rod—Periodically Varying Axial Rigidity EA 

As a second example, the new homogenization procedure is applied to a rod of unit length with a 
periodically varying axial rigidity given by 

 )
5

sin(3 yEA π
+= , (36) 

and with an end displacement given by 1.00 =lu .  The microscale y is chosen to be one one-
hundredth of the macroscale x such that ε = 0.01 (note that this gives a y-period of 10 for the 
axial rigidity).  This information, evaluated with the definition of )( yα , the truncated expansion 
(equation 6), and the ordered displacements (equations 17 and 24), yields a predicted solution for  
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Figure 1.  (a) The function α(y), (b) the microscale displacement field εu1(y), and (c) the predicted displacement 
field uε(xε) for the example rod with periodically varying axial rigidity (i) EA = 3 + sin(π y/5),  
(ii) EA = 3 + 2.9sin(π y/5), and (iii) EA = 3 + 2.9signum(sin(π y/5)). 

the displacement field.  The top portion of figure 1 shows the results for the function )( yα , the 
predicted microscale displacement field εu1(y), and the predicted displacement field uε(xε) for 
this example. 

It is interesting to note from this example that the microscale displacement is indeed y-periodic, 
as imposed a priori in the traditional homogenization procedure.  The effects of further 
increasing the variability of the axial rigidity are shown in the middle portion of the figure.  
Finally, the results for a rod with nonsinusoidal, but still periodic, axial rigidity are given in the 
bottom portion of the figure.  This last example gives further evidence supporting the imposition 
of microscale displacement periodicity in the standard homogenization method (note that, 
indeed, the microscale displacement is periodic).    

(b)

(i) 

(iii) 

(ii) 

(a) (c) 
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3. Conclusions 

Using the well-established homogenization theory, a modification has been proposed for 
engineering applications in which the microscale displacement field is nonperiodic.  The result is 
a novel nonperiodic homogenization procedure for functionally graded and reduced dimension 
problems where y-periodicity breaks down because of material or dimensional considerations.  A 
specialized one-dimensional formulation was presented, verified against an exact solution, and 
subsequently demonstrated.  A fully three-dimensional formulation is currently underway and 
will be presented in a sequel paper. 
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